Robust Multi-View Clustering With a Unified Weight Learning Paradigm

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Localized Multi-view Subspace Clustering

In multi-view clustering, different views may have different confidence levels when learning a consensus representation. Existing methods usually address this by assigning distinctive weights to different views. However, due to noisy nature of realworld applications, the confidence levels of samples in the same viewmay also vary. Thus considering a unified weight for a view may lead to suboptim...

متن کامل

Multi-view Self-Paced Learning for Clustering

Exploiting the information from multiple views can improve clustering accuracy. However, most existing multi-view clustering algorithms are nonconvex and are thus prone to becoming stuck into bad local minima, especially when there are outliers and missing data. To overcome this problem, we present a new multi-view self-paced learning (MSPL) algorithm for clustering, that learns the multi-view ...

متن کامل

A Unified View of Spectral Clustering∗

We formulate a discrete optimization problem that leads to a simple and informative derivation of a widely used class of spectral clustering algorithms. Regarding the algorithms as attempting to bi-partition a weighted graph with N vertices, our derivation indicates that they are inherently tuned to tolerate all partitions into two non-empty sets, independently of the cardinality of the two set...

متن کامل

Active + Semi-supervised Learning = Robust Multi-View Learning

In a multi-view problem, the features of the domain can be partitioned into disjoint subsets (views) that are sufficient to learn the target concept. Semi-supervised, multi-view algorithms, which reduce the amount of labeled data required for learning, rely on the assumptions that the views are compatible and uncorrelated (i.e., every example is identically labeled by the target concepts in eac...

متن کامل

Unified subspace learning for incomplete and unlabeled multi-view data

Multi-view data with each view corresponding to a type of feature set are common in real world. Usually, previous multi-view learning methods assume complete views. However, multi-view data are often incomplete, namely some samples have incomplete feature sets. Besides, most data are unlabeled due to a large cost of manual annotation, which makes learning of such data a challenging problem. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2958493